首页> 外文OA文献 >External query reformulation for text-based image retrieval
【2h】

External query reformulation for text-based image retrieval

机译:用于基于文本的图像检索的外部查询重构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In text-based image retrieval, the Incomplete Annotation\udProblem (IAP) can greatly degrade retrieval effectiveness. A standard method used to address this problem is pseudo relevance feedback (PRF) which updates user queries by adding feedback terms selected automatically from top ranked documents in a prior retrieval run. PRF assumes that the target collection provides enough feedback information to select effective expansion terms. This is often not the case in image retrieval since images often only have short metadata annotations leading to the IAP. Our work proposes the use of an external knowledge resource (Wikipedia) in the process of refining user queries. In our method, Wikipedia documents strongly related to the terms in user query (" \uddefinition documents") are first identified by title matching between the query and titles of Wikipedia articles. These definition documents are used as indicators to re-weight the feedback documents from an initial search\udrun on a Wikipedia abstract collection using the Jaccard coefficient. The new weights of the feedback documents are combined with the scores rated by different indicators. Query-expansion terms are then selected based on these new weights for the feedback documents. Our method is evaluated on the ImageCLEF WikipediaMM image retrieval task using text-based retrieval on the document metadata fields. The results show significant improvement compared to standard PRF methods.
机译:在基于文本的图像检索中,不完整注释\ udProblem(IAP)会大大降低检索效率。用于解决此问题的标准方法是伪相关反馈(PRF),它可以通过添加从先前检索运行中从排名最高的文档中自动选择的反馈词来更新用户查询。 PRF假设目标集合提供了足够的反馈信息以选择有效的扩展术语。在图像检索中通常不是这种情况,因为图像通常仅具有导致IAP的短元数据注释。我们的工作建议在完善用户查询的过程中使用外部知识资源(Wikipedia)。在我们的方法中,首先通过查询与Wikipedia文章标题之间的标题匹配来识别与用户查询中的术语密切相关的Wikipedia文档(“ \ uddefinition文档”)。这些定义文档用作指示符,以使用Jaccard系数对来自Wikipedia抽象馆藏的初始搜索\ udrun的反馈文档重新加权。反馈文档的新权重与不同指标评分的分数相结合。然后根据这些新的权重为反馈文档选择查询-扩展术语。我们对ImageCLEF WikipediaMM图像检索任务使用在文档元数据字段上基于文本的检索来评估我们的方法。与标准PRF方法相比,结果显示出显着改善。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号